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SHEET TENSILE PROPERTIES OF TITANIUM ALLOYS
AS AFFECTED BY TEXTURE

ABSTRACT

A study was carried out on the effect of specimeh orientation on the
sheet tensile properties of several titanium alloys. For these alloys, chem-
ical analysis, microstructure, X-ray pole figures, and sheet tensile
properties were determined at lO-depree increments from the rolling to the
transverse direction. In addition to the conventional yield strength, ten-
sile strength, and elongation values, strain gages were used to determine
Young's modulus and Poisson's ratio. A study of plastic anisotropy was also
made.

It is shown that several types of textures exist in these alloys and the
characteristics of the mechanical properties are anisotropic and related to
the texture type. A simple approximation of the anisotropic behavior pat-
terns can be understood-by relating these patterns to single-crystal
properties.
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INTRODUCTION

There has been a growing interest in the possibility of employing the
control of texture for the improvement of the strength of certain materiiAs.
The term "texture hardening", which was first employed by Backofen and his
co-workers, certainly has this connotation, and the work in this field has
that objective.1-6 There are now several investigators attempting to utilize
the suggestions of Hill 7 for structural improvements of components which are

CC, subjected to multiaxial stresses, particularly pressure vessels.8 Although
most of the interest for the structural use of anisotropic materials has been
along these lines, this is not necessarily the only possibility, for it can
be readily demonstrated that large variations in strength can occur even in
uniaxial tension tests. 9 This large difference in uniaxial tensile strengths
is particularly prevalent in certain hexagonal close-packed metals which have
strong preferred orientations. There is no doubt that as more knowledge of
these anisotropic plastic flow and fracture properties develop the industrial
exploitation of these properties will grow.

Of the investigations'carried on in this field, only relatively few have
reported the textures of the material employed. Those which have determined
textures have been somewhat limited in scope. Most of the prior work for
titanium has been confined to commercially pure or the all-alpha type alloys,
probably due to the fact that the alpha alloys seem to develop the textures
in sheet material which are the most favorable for utilization of the texture
hardening.

This is somewhat surprising for the all-alpha alloys are generally
weaker and require considerable improvements by texture strengthening to be
equivalent to a good heat-treatable alpha-beta alloy. Thus, it seems that the
lack of information about textures, or the control thereof, in the alpha-beta
alloys of titaniunt has inhibited this utilization in this field. This exper-
imental investigation is the second part of a program for the study of the
interrelationship of texture and tensile properties of titanium sheet mate-
rials. The first part was carried out on a commercially pure titanium.10
This part is centered around the alloys of titanium.

TEST PROCEDURE
Chemical Analysis

The materials tested in this investigation were alloys of titanium, four
sheets of Ti-6AI-4V, four sheets of Ti-16V-2.SAI, two sheets of Ti-SMn
CRC!3OA), two sheets of Ti-6Ai-6V-2Sn, two sheets of Ti-4Ai-34o-IV, and one
sheet each of Ti-8AI-IMo-lV and Ti-4AI-4Mn (RCl30B). These sheets represent
materials of both moderately old and fairly recent production. They also
encompass a range of thicknesses from 0.022 to 0.130 inch. Chemical analysis
was performed for the major alloying elements and the results are given in
Table I.



Table 1. CHEMICAL ANALYSIS

Thickness Element (weight percent)

Alloy Heat (in.) V Al Mn Mo Sn

6A1-4V M2803 0.038 3.69 5.80 T
12803 0.074 3.74 5.90
M7199 0.060 3.94 5.95
B22075 0.129 4.04 5.96

16V-2.SA1 B22117 0.046 15.14 2.60
B24990 0.041 15.35 2.58
M23346 0.070 1S.57 2.56
T22154 0.066 15.59 2.63

RC130A 3442 0.062 8.64
AS221-16 0.122 7.95 f

6A1-6V-2Sn S 0.115 5.43 5.39 2.22
H 0.115 5.06 5.56 2.40

4A1-3Mo-1V X70006 0.060 1.05 3.64 2.86
M8773 0.022 0.97 3.33 2.99

8A1-lMo-lV V1848 0.150 1.01 7.781 0.98

RC-130B B3263-BI 0.053 4.291 3.84 -

Microstructure

The microstructures were determined and are shown in Figure 1 at 1O00X
magnification. The etchant utilized was 30 cc glycine, 10 cc nitric acid,i and 10 cc hydrofluoric acid. The microstructure of three of the Ti-6AI-4V

alloys (Figure la, b, and c) are equiaxed alpha with beta in the alpha grain
boundaries indicative of az-received structure annealed in the alpha-beta
field. The fourth heat of Ti-6A1-4V, B22075, is acicular alpha (transformed
beta) with no evidence of retained beta or primary alpha (Figure d).

The metastable alpha-beta alloy Ti-16V-2.SAl structures are shown in
Figures le through h. Heats B22117 (e) and M23346 (g) are in the as-received
annealed or solution-treated condition, which is essentially the same; heat
T22154 (h) is in the heat-treated condition. Heats T22154 (h) and B24990 (f)
have a coarse grain which is an indication that these sheets were heated'into
the all-beta field.

The alpha-beta alloy Ti-8Mn (RCl3OA), heats 3442 (i) and A5221-16 (j)
are in the as-received annealed condition with heat 3442 boing somewhat
larger in grain size. The structure is essentially alpha prime in a beta
matrix.

Both heats of the alpha-beta alloy Ti-6A1-6V-2Sn are in the as-received
condition (Figures 1k and 1). The structure is primarily an alpha matrix
with retained beta outlining alpha grains.
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Structures for the alpha-beta Ti-4A1-3Mo-lV are shown in Figures lrn and n.
Heat X70006 structure is apparently indicative of an as-received annealed
condition, retained beta in an alpha prime matrix. The microstructure for
heat Mt8173 shows a soiution-treated structure of a beta iatrix with alpha
prime.

The two remaining alpha-beta alloys, Ti-8A1-lMo-lV and Ti-4A1-4Mn
(RC13OB), appear to be in the as-received mill-annealed condition (Figures
lo and p).

Texture

X-ray diffraction determination of the preferred orientation was carried
out utilizing the reflection method described by Lopata and Kula II and the
results are shown in Figure 2. Because of time and expense, only the pole
figure for the basal plane was determined. In the cases where there Was a
large amount of beta, a pole figure for this phase was determined. Since
most of the properties for hexagonal metals are symmetrical around the basal
pole, it was felt that the basal pole figure would suffice.

The results shown in the figures confirm the general pattern as reported
in the survey of Dillamore and Roberts. 12 One family of titanium textures, the
alpha-deformation type, can be described as having a high intensity of basal
poles in the sheet normal-transverse direction plane, and these poles are
tilted at various angles toward the transverse directions. Because more work
is needed, it cannot be definitely established that Figures 2a, b, c, g, h,
i, j, m, and p are of this type. A characteristic of this type of texture is
one which arises from the beta phase or appears in the alpha phase as a
result of the transformation of beta to alpha on cooling through the trans-
formation relationships of (0001)a II (1101 and <1170>a I I (l>.

'It has been found that the beta phase shows a (100) [011] type of tex-
ture 12 which is the type for the beta phase shown in Figure 2e and possibly
2f. The alpha textures are inherited from the beta (110) [011] type and are a
result of the above transformation orientations as illustrated in Figures 2d,
k, 1, m, and o.

This is only a brief description of the textures found and considerable
more work is needed to completely describe the textures present. It seems
that additional studies are needed, particularly on the alpha-beta alloys
because of the complex nature of the working, which is done partly in the
beta, partly in the Alpha-beta, and finally in the alpha. Transformation

* occurs upon heating, annealing, or heat treatment, and the texture which
develops as a result of all these events is imperfect.

Mechanical Testing

A series of sheet tensile specimens were machined at 10-degree increments
from the rolling to the transverse direction. The specimen orientation is
defined by the angle a that the specimen axis makes with the rolling direc-
tion as shown in Figure 3. In some cases, the specimens were cut for angles

I3
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. .. ..... __ ---- up to 180 degrees. The longitudinal
0 specimens would then be marked 0 or

180 degrees and the transverse 90
500, degrees.

0

The test procedure and setup is

0 0 essentially the same as that employed
in previous investigations.9'I0 The

/ geometry of the sheet tensile bar is
shown in Figure 4.

C.

W In order to obtain precision
0 900 -strain measurements for the determi-

- E~Ination of Young's modulus and Poisson's-
2Cratio (both plastic and elastic),. 90-

degree, two-element, post yield
rosette strain gages were utilized.
The signal from the strain gages
along with the load signal was fed
into an X-Y-Y' recorder. hiz .proce-
dure produced two curves: a load

30° -versus longitudinal strain and a
longitudinal strain versus transverse

1800 strain. These curves were used to
determine the various special proper-

Figure 3. SCHEMATIC-OF TENSILE ties such as Young's modulus and
SPECIMEN ORIENTATIONS Poisson's ratio. The conventional

,engineering tensile properties were obtained with a snap-on extensometer.
All specimens were tested at room temperature on a 120,000-pound hydraulic
universal testing machine at a strain rate of 0.005 inch per inch per minute.
A schematic of the test setup is shown in Figure 5. More details on the
method ,of detex-mining various mechanical properties are available in a
previous report.
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DISCUSSION OF RESULTS

Young's. Modulus

An -understanding of the effect of texture upon Young's modulus is facil-
itated by a knowledge of single-crystal elastic properties. Much of this has
been recently reviewed by Hearman.13 Research has shown that for hexagonal
single crystals, Young's modulus is sensitive to the angle that the applied
stress makes with the basal pole and is symmetrical about this pole. Sonic
measurements of Young's modulus in single crystals of titanium14,15 have
shown that Young's modulus is the lowest (14.5' x 106) when the stress axis
lies in the basal plane and the highest (21.0 x 106) when the stress axis
coincides with the basal pole. It can-be seen that a variation of about 50

IY percent in modulus is observed in titanium single crystals. It would beexpected that, for certain strange preferred orientations, a variation in

Young's modulus will appear in polycrystalline titanium sheet. This discus-
sion applies to the alpha or hexagonal phase but a similar one could be
presented for the beta or body-centered cubic phase.

As can be seen from the above and from the three types of textures -found
in the alloys studied, it is to be expected that widely different behavior
patterns will be evident. The experimental verification of this is illus-Itrated in Figure 6. The variation of Young's modulus for the sheets with
alpha-deformation type texture (6a, b, c, g, h, i, j, m, and p) shows a pat-
tern which is similar to that observed in previous investigation.10  Briefly,
for these textures it was found that the lowest Young's modulus should
ppar in the rolling direction since the greatest numberof grains would

havd the stress axis closest to the basal plane. -If the texture is random
or if the basal planes areparallel to the sheet surface, it wculd be ex-
pected that no variation in Young's modulus will occur with- changing specimen
orientation. On the other hand, if a strong texture exists, t;e variation in
Young's modulus will depend upon how the basal poles are oriented. The sheet-
having the greatest tilt of the basal pole toward the transversedirection
will have the greatest variation of Young's modulus in the transverse direc-
tion. Three very striking examples of this are shown in Figures 6a, b, and p.
The presence of beta in the alpha matrix will have a tendency to modify this
behavior pattern which results in raising Young's modulus in the rolling
direction and lowering it around 30 to 40 degrees a.

Both of the other two types of textures produce similar patterns of
Young's modulus as a function of specimen orientation. An extreme example

Lis shown for the beta phase (body-centcred cubic) in Figure 6e. Referring
back to the pole figure (Figure 2-1), it can be seen that this is a very

-- strong texture of the (100) <011> type. Thus, the high for Young's modulus in
the rolling and transverse direction with a low at about 45 degrees is to be
expected for body-centered cubic metals. The low in Young's modulus is
usually found in the <100> direction with an intermediate value in the <110>
direction and a high in the <111> direction. The alpha texture which develops
from the transformation of this beta texture produces a similar pattern of
Young's modulus with specimen orientation, primarily because the transforma-

tion relationships give rise to basal poles in the rolling direction. These
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transverse c~intraction strain (Poisson's ratio) should be anisotropic. It
has been previously shown9 that in titanium and its alloys Poisson's ratio

can vary from about 0.20 to 0.44. It is then to be expected that those
sheets exhibiting strangely developed textures of certain orientations will
have significant variations of Poisson's ratio. The results of this investi-
gation are plotted in Figure 7.t

Ti-6A-4V 0.35 a. Heat M42803 0.35 b. Heat M42803
0.033"thick0.070" thick

0.300.30
00

0.25 -0.25

0.0 111 11 .0 11 jL2WIIL

0.5- C. Heat 147199 0.0-d. Heat B22075

0.55 0.350

0.40 02

Ti-16V-2.SAI - ** Heat B22117 f. Heat 24990

0.35 -0.45

0 .3H0 t1234 0.35-h etT25

0.300.0

0 111-ni 1110.25 , I I I I I I I_________

0 10 20 3040 50 60 70 8090 010-20 3040 50 6U 70 8090
a Orientation (degrees)

Figure 7a-h. VARIATION OF POISSON'S RATIO IN THE ELASTIC
ZONE (PE) WITH SPECIMEN ORIENTATION()



If the curves are placed in the category of genekal texture type, cer-
tain behavior patterns evolve. For the alpha-deformation type texture, the
variation of Poisson's ratio depends upon the tilt of the basal pole toward
the- transverse direction. When the basal poles are near the sheet -normal-,
Poisson's ratio is high and does not vary to 'any large degree with specimnen
orientation as shown in Figure 7m. As the basal poles tilt toward the trans-
verse direction, the value of Poisson's ratio decreases at all specimen ori-
entations and to a larger degree near the rolling direction. Therefore, in
this case, the lowest value of Poisson's ratio is found in the rolling direC-
tion as illustrated in Figure 7a.

II
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The beta-phase texture and the alpha texture, which is a result of the
transforination of the beta texture, have similar patterns of Poisson's ratio
wA.th specimen orientation. The curve in Figure 7e illustrates an extreme
case of this. The value of Poisson's ratio is low in the rolling and trans-
verse directions with a high at about 45 degrees.

Yield Strength

It is also demonstrated that the yield strength of single crystals is a
function of orientation. It appears that the yield strength should also
vary with specimen orientation depending upon texture type. For the alpha-
deformation type, the variation will be small when the basal poles are near
the sheet normal and large when they are near the transverse direction. An
example of this large variation is shown in Figures 8a and p.

TI-6A1-4V a. Heat M2803 b. Heet 12803
120 - 0.033" thick 140- 0.070" thick

110 
130 -

0
100 120

eo0 110
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at M7199217

~130 10

CI

E 120__ _ _ _ _ _ _ _ _

Ti-16V-2.5AI 10 90 f. Heat 24990

g'. Heat M23346 180 h. Heat T22154'

120 - 1 170 -- 1 1 1

0 10 20 30 40 50 60 70 80 90 0 10 20- 30 40 50 60 70 80 90

a Orientation (degrees)

Figure 8a-h. VARIATION OF YIELD STRENGTH WITH SPECIMEN
ORIENTATION (a)
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For the other two texture types, the variation Of yield strength withspecimen orientation is small. Insm aetevlue of yield strength
=is somewhat less in the region of specimen orientations around 45 degreeswith high yield strength appearing in the rolling and transverse directions.Figures 8k and 1 illustrate this.
RC130A 15 . Heal 3442 150 J. Heat 5221-16

14014

13013

120 M

T1-6A1=6V-2Sn k. Heat SI.Ha

150 160

C, 140 150

Ti-4A1M3HaWv 120 
110 HetM87

M.Ha1000 n et 87

90 80

80 
7160 170o. TiI-8A V1 170 RC1308

Heat V1848 Heat 83263-B1
ISO 15 160

140 
150

130 140

120 1 1 1 1 1 1 1 1 130ot
0 10 2030 40505070 809 0023.0 5 78 0

a Orientation (degrees)
Figure 81-p. VARIATION OF YIELD STRENGTH WITH SPECIMEN

ORIENTATION (a)
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Tensile Strength

The variation in tensile strength with specimen orieaitation depends upon
two things, first, the yield strength, -and second, the rate of strain harden-
ing. Both of these properties can vary with specimen orientation in a corn-
plicAted way so that a complicated pattern can easily develop as shown in
Figure 9.
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Figure 9a-h. VARIATION OF TEN~SILE STRENGTH WITH
SPECIMEN ORIENTATION (a)
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Figure 9o-p. VARIATION OF TENSILE STRENGTH WITH
SPECIMEN ORIENTATION (a)

An analysis of these curves reveals that except for the case where the
basal poles are near the sheet normal (Figures 9m and n), which we cannot
explain, the curves follow two types; an alpha and a beta type. 7he alpha-
phase type included both the alpha deformation texture and the alpha-
tranformed-beta deformation type. The primary feature of these curves is a
low tensile strength at specimen orientation around 40 to SO degrees, a high
in the rolling direction, and sometimes-higher value in the transverse I
direction.

The beta-phase type (Figures 9e and f) shows a high at 40 to 50 degrees

and a low in the rolling and transverse directions. I
Plastic Poisson's Ratio

Of all the mechanical properties, the ratio of plastic strains is prob-
ably more sensitive to texture than the others studied. This is clearly
evident from the large variations shown in Figure 10. As pointed out previ-
ously,9 the values of Poisson's plastic strain ratios are related through
constancy of volume to the more commonly used value of the ratio of lateral
contraction strains which is called R. It is difficult to describe the pat-
tern displayed by this data. It appears, however, that the lowest value is
in the rolling direction and, as the specimen orientation moves to the trans-
verse direction, the value increases to a maximum at 40 to 50 degrees and
then decreases. The value for the transverse test, in general, is somewhat
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higher than that for the rolling direction. It seems the alpha-deformation
type texture produces the largest spread in values when the basal poles are
tilted furthest toward the transverse direction.

Elongation

The percent elongation was not determined on all sheets and the informa-
tion available is illustrated in Figure 11. It appears that relatively
little can be said about the variation in percent elongation and its connec-

t( tion with texture. In some cases it seems there is a mild tendency for the
elongation to peak at an angle of about 45 degrees.

SUMIARY

From this extensive program and previous work, it is now clearly estab-
lished that titanium and titanium alloys can be anisotropic with respect to
their uniaxial tensile properties. The most sensitive measure of this
anisotropy appears to be the strain although the other mechanical properties
such as Young's modulus, yield strength, and tensile strength are also influ-
enced. This study has shown the general behavior patterns observed in com-
mercially obtainable textures of several types. The patterns of behavior
observed can be described in a qualitative way and further work is needed to
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more fully develop a quantitative understanding of the interrelationshios
between textured and mechanical properties of sheet materials.

It is hoped that the data presented here will, serve to stimulate further
7. inquiries into textured materials and encourage utilization in special struc-

- tural applications where the improvements obtainable arc at a premiumi
- Further effort needs to be expended into discovering heat treatment and

deformations necessary to obtain desirable textures. Once these textures
can be controlled and are understood, it is possible that tremendous poten-
tial for improved mechanical properties will be realized.,
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